
在处理高并发请求时,后端开发人员常常面临性能瓶颈、系统崩溃、响应延迟等技术痛点。以下将结合实战案例,分析高并发场景下的常见问题及解决方案。
1. 服务器配置优化实战
通过调整服务器参数可显著提升高并发处理能力。以下为Nginx的配置示例,用于优化连接数和请求处理效率:
worker_processes auto;
events {
worker_connections 4096;
}
http {
server {
listen 80;
location /api {
proxy_pass http://backend;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;
proxy_connect_timeout 60s;
proxy_send_timeout 60s;
proxy_read_timeout 60s;
proxy_buffer_size 16k;
proxy_buffers 4 64k;
proxy_busy_buffers_size 128k;
}
}
}
关键参数说明:
参数 | 说明 |
---|---|
worker_connections | 单进程最大连接数,建议值4096 |
proxy_connect_timeout | 后端连接超时时间 |
proxy_buffer_size | 缓冲区大小 |
2. 缓存策略实战解决方案
Redis缓存穿透问题解决方案:使用布隆过滤器拦截不存在的key请求
package main
import (
"github.com/gomodule/redigo/redis"
"github.com/redis-go/redis/v8"
)
var ctx = context.Background()
func isKeyExist(client redis.Client, key string) (bool, error) {
return client.Exists(ctx, key).Val() > 0, nil
}
func handleRequest(w http.ResponseWriter, r http.Request) {
key := r.URL.Query().Get("id")
exists, err := isKeyExist(client, key)
if err != nil {
http.Error(w, "Internal Server Error", http.StatusInternalServerError)
return
}
if !exists {
http.Error(w, "Not Found", http.StatusNotFound)
return
}
// 实际业务逻辑...
}
布隆过滤器实现示例(Go语言):
import (
"github.com/golang/groupcache/lru"
"github.com/golang/groupcache/peer"
"github.com/golang/groupcache/storage"
)
var (
cache = lru.New(1000)
hash = fnv.New32a()
)
func bloomFilter(key string) bool {
hash.Reset()
hash.Write([]byte(key))
return cache.Contains(hash.Sum32())
}
func setBloomFilter(key string) {
hash.Reset()
hash.Write([]byte(key))
cache.Add(hash.Sum32())
}
3. 数据库优化实战
MySQL读写分离配置示例(Keepalived实现):
apiVersion: v1
kind: Configmap
metadata:
name: mysql-config
data:
keepalived.conf: |
vrrp_instance VI50 {
state MASTER
interface eth0
virtual_router_id 50
priority 100
advert_int 1
authentication {
auth_type PASS
auth_pass 123456
}
virtual_ipaddress {
192.168.1.100
}
}
vrrp_script check_mysql {
script "mysqladmin -u root -p'password' ping -h 192.168.1.100"
interval 2
weight -10
fall 3
rise 2
}
SQL查询优化示例(避免全表扫描):
-- 低效查询
SELECT FROM orders WHERE user_id = 100;
-- 高效查询
SELECT id, order_date, total_amount
FROM orders
WHERE user_id = 100
ORDER BY order_date DESC
LIMIT 100;
4. 异步处理实战方案
SQS消息队列处理订单异步通知示例(Python):
import boto3
import json
def process_order_message(message):
data = json.loads(message['Body'])
order_id = data['order_id']
处理订单逻辑...
print(f"Processing order {order_id}")
标记消息已处理
sqs.delete_message(
QueueUrl=ORDER_QUEUE_URL,
ReceiptHandle=message['ReceiptHandle']
)
sqs = boto3.client('sqs', region_name='us-east-1')
ORDER_QUEUE_URL = "https://sqs.us-east-1.amazonaws.com/123456789012/order_queue"
def listen_for_messages():
while True:
messages = sqs.receive_message(
QueueUrl=ORDER_QUEUE_URL,
MaxNumberOfMessages=10,
WaitTimeSeconds=20
)
if 'Messages' in messages:
for message in messages['Messages']:
process_order_message(message)
5. 分布式锁实战实现
Redis分布式锁实现(Java):
public class RedisLock {
private static final String LOCK_KEY = " 分布式锁";
private Jedis jedis;
public RedisLock(Jedis jedis) {
this.jedis = jedis;
}
public boolean tryLock(String requestId) {
String result = jedis.set(LOCK_KEY, requestId, "NX", "EX", 30);
return "OK".equals(result);
}
public boolean releaseLock(String requestId) {
String script =
"if redis.call('get', KEYS[1]) == ARGV[1] then " +
"return redis.call('del', KEYS[1]) " +
"else " +
"return 0 " +
"end";
Object result = jedis.eval(
script,
Collections.singletonList(LOCK_KEY),
Collections.singletonList(requestId)
);
return "1".equals(result.toString());
}
}
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。